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Abstract Information from the vestibular, sensorimotor, or
visual systems can affect the firing of grid cells recorded in
entorhinal cortex of rats. Optic flow provides information
about the rat’s linear and rotational velocity and, thus, could
influence the firing pattern of grid cells. To investigate this
possible link, we model parts of the rat’s visual system and
analyze their capability in estimating linear and rotational
velocity. In our model a rat is simulated to move along
trajectories recorded from rat’s foraging on a circular ground
platform. Thus, we preserve the intrinsic statistics of real rats’
movements. Visual image motion is analytically computed for
a spherical camera model and superimposed with noise in
order to model the optic flow that would be available to the
rat. This optic flow is fed into a template model to estimate the
rat’s linear and rotational velocities, which in turn are fed into

an oscillatory interference model of grid cell firing. Grid
scores are reported while altering the flow noise, tilt angle of
the optical axis with respect to the ground, the number of flow
templates, and the frequency used in the oscillatory interfer-
ence model. Activity patterns are compatible with those of
grid cells, suggesting that optic flow can contribute to their
firing.

Keywords Optic flow . Grid cell firing . Entorhinal cortex .

Spherical camera . Visual image motion . Gaussian noise
model . Self-motion

1 Optic flow as one cue for self-positioning
and self-orientation

Visual input from optic flow provides information about
self-motion and, thus, could be one cue for the rat’s grid
cell system. To characterize the quality of an optic flow
input, we suggest a model for optic flow of the rat’s visual
system that estimates linear and rotational velocity. These
estimated velocities are fed into an oscillatory interference
model for grid cell firing. Firing patterns generated by the
concatenation of these two models, the template model and
oscillatory interference model are evaluated using a grid
score measure.

In this modeling effort we exclusively study the optic flow
cue and exclude any contributions from other systems for
purposes of analysis. However, we are aware of other cues
such as landmarks, vestibular, or sensorimotor signals that
might have strong influence on grid cells (Hafting et al.
2005; Barry et al. 2007). Thus, this study serves as a founda-
tion for considering more complex, multi-cue paradigms.
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1.1 Does the rat’s vision allow for the processing of optic
flow?

Low-level processing mechanisms for visual motion exist in
rat’s cortex. The vast majority of neurons in primary visual
cortex respond to visual image motion (95 %) and the rest to
flashing stimuli (Burne et al. 1984). Motion sensitive neu-
rons show tuning for orientation, spatial frequency, and
temporal frequency of a presented grating. The optimal
stimulus velocity varies between 10 °/s to 250 °/s, and some
neurons are selective to velocities of 700 °/s (Girman et al.
1999). Although a hierarchy of visual processing similar to
the one in monkey cortex (Fellman and Van Essen 1991) has
been pointed out based on the morphology (Coogan and
Burkhalter 1993), the functional mapping of these anatom-
ically identified areas is largely unknown.

Visual cues clearly contribute to the spatial response
properties of neurons in the entorhinal cortex and hippo-
campus, including the responses of grid cells (Hafting et al.
2005; Barry et al. 2007), boundary vector cells (Solstad et
al. 2008; Lever et al. 2009), head direction cells (Taube et al.
1990) and place cells (O'Keefe and Nadel 1978; Muller and
Kubie 1987). Visual cues clearly influence the firing of
these neurons, as rotations of a white cue card on a circular
barrier causes rotations of the firing location of place cells
(Muller and Kubie 1987) and grid cells (Hafting et al. 2005)
and the angle of firing of head direction cells (Taube et al.
1990). Compression or expansion of the environment by
moving barriers causes compression or expansion of the
firing fields of place cells (O'Keefe and Burgess 1996) and
grid cells (Barry et al. 2007). These data demonstrate the
important role of visual input as one cue for generating
spatial responses of grid cells. But visual input is not the
only factor influencing firing, as grid cells and place cells
can continue to fire in the same location in the darkness
(O'Keefe and Nadel 1978; Hafting et al. 2005), and on the
basis of self-motion cues without visual input (Kinkhabwala
et al. 2011), so visual input is just one out of many possible
influences on the firing of these cells. Experimental data has
not yet indicated what type of visual input is essential.
Detection of the distance and angle of barriers (Barry et al.
2007) could involve learning of features and landmarks, but
could also leverage optic flow. Modeling the potential
mechanism for the influence of optic flow on the neural
responses of grid cells provides a means to test the possible
validity of optic flow as a cue contributing to the firing
location of these cells.

In our proposed model for rat’s processing of optic flow
we assume areas of higher-level motion selectivity for the
detection of self-motion from optic flow, similar to those
found in macaque monkey’s area MST (Duffy and Wurtz

1995; Duffy 1998; Graziano et al. 1994). Although visual
processing for rats is different—major differences occur in
visual acuity and space variant vision—we assume that
these mechanisms of large field motion pattern detection
are not critical with respect to these properties provided by
monkey’s cortex. In other words large field motion pattern
can be detected also with a uniform sampling and low visual
acuity, in our study 40×20 samples, and we do not use these
properties of high visual acuity and space variant vision in
our simulations.

1.2 Optic flow encodes information about directional linear
and rotational velocities, relative depth, and time-to-contact

Brightness variations can occur due to object motion,
background motion, or changes in lighting. Optic flow
denotes the motion of brightness patterns in the image
(Horn 1986, p. 278 ff.). To describe optic flow, models
of visual image motion have been developed that denote
the 3D motion of points projected into the image. Most
models use a pinhole camera (Longuet-Higgins and
Prazdny 1980; Kanatani 1993) or a spherical camera
(Rieger 1983; Fermüller and Aloimonos 1995; Calow
et al. 2004) and in both cases the center of rotation is
located in the nodal point of the projection. Along with
the camera model, the translation and rotation in 3D of the
sensor is described by an instantaneous or differential
motion model (Goldstein et al. 2001) which neglects
higher order temporal changes like accelerations. As sim-
plification we assume here all temporal changes of bright-
ness, optic flow, and visual image motion are the same
vector field.

In general optic flow contains information of the sensor’s
linear and rotational 3D velocities, and relative depth values
of objects in the environment. Several algorithms have been
proposed for the estimation of linear and rotational veloci-
ties from optic flow using models of visual image motion.
Different objective functions, e.g. the Euclidean difference
between sensed optic flow and modeled visual image mo-
tion, have been used to formulate linear (Kanatani 1993;
Heeger and Jepson 1992) and non-linear optimization prob-
lems (Bruss and Horn 1983; Zhang and Tomasi 1999).
Specific objective functions have been directly evaluated
by using biologically motivated neural networks (Perrone
1992; Perrone and Stone 1994; Lappe and Rauschecker
1993; Lappe 1998).

With linear velocity and relative depth, both estimated
from optic flow, time-to-contact between the sensor and
approaching surfaces can be computed (Lee 1976). For
instance, plummeting gannets estimate their time to contact
with the water surface from radial expanding optic flow, to
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close their wings at the right time before diving into the
water (Lee and Reddish 1981).

Information about linear and rotational velocities es-
timated from optic flow could contribute to the firing of
head direction and place cells in rats. By temporally
integrating rotational velocities the head’s direction rel-
ative to some fixed direction (e.g. geographical north)
can be computed. Thus, this integrated velocity signal
could directly serve as input to the head direction cell
system. Experiments support such integration. For in-
stance, if visual motion and landmark cues contradict
each other, often head direction cells average signals
from both cues (Blair and Sharp 1996). Place cells are
influenced by visual motion cues as well. Rats in a
cylindrical apparatus with textured walls and textured
floor which can be independently rotated show a more
reliable update of place field firing if walls and floor
have a compatible rotation. Thus, place cell firing is
influenced by visual and vestibular signals (Sharp et
al. 1995). Border cells (Solstad et al. 2008) could inte-
grate time to contact information from walls that give
rise to optic flow of high velocity since the length of
flow vectors for translational motion is inversely related
to distance. Furthermore, integration of linear velocity
and rotational velocity provides a position signal that
could serve as an input to the grid cell firing system.
However, this temporal integration or path integration
typically encounters the problem of error summation.
Small errors accumulate over the course of integrating
thousands of steps and can potentially lead to large
deflections in the calculated animal’s spatial position.
In order to study this problem of error summation and
its influence on grid cell firing, we propose a model for
optic flow in rats and a mechanism for self-motion
detection and test its ability to generate grid cell firing.

2 Methods

A model for optic flow processing in rats and its influence
on grid cell firing is developed in the following steps. Linear
and rotational velocities are extracted from recorded rat
trajectories that are pre-processed to model the rat’s body
motion (Section 2.1). Visual image motion is simulated
moving a spherical camera along these pre-processed trajec-
tories (Section 2.2). In order to estimate the linear velocity
the visual image motion model is constrained to points
sampled from a horizontal plane (Section 2.3). Optic flow
is modeled by adding Gaussian noise to the visual image
motion which accounts for errors that would occur if flow
was estimated from spatio-temporal varying patterns of

structured light (Section 2.4). A template model estimates
linear and rotational velocity from optic flow (Section 2.5).
Finally, these estimated velocities are integrated into an
oscillatory interference model to study grid cell firing
(Section 2.6).

2.1 Simulating the rat’s locomotion by linear and rotational
velocities

Typically in experiments only the head movement of rats
is recorded and not their body movement or eye move-
ment. This recorded data only allows an approximate
calculation of the rat’s retinal flow due to body motion,
which is based on the assumption that the monocular
camera that models the rat’s entire field of view is
forward directed and tangent to the recorded trajectory.
This assumption leads to rotational velocities of nearly
360 ° between two sample points, leading to a rotational
velocity of 360 ° · 50 Hz018,000 °/s, which seems
unrealistically high, especially as visual motion sensitive
cells in rats V1 are selective to speeds only up to 700 °/s
(Girman et al. 1999). Looking at the behavior, these high
rotational velocities occur due to head/sensor movements
that are independent of body movements. Here we do not
account for either of these movements. In addition jitter
occurs in the recorded position. For these reasons we
pre-processed all recorded rat’s trajectories with an iter-
ative method that is based on three rules. First, data
points are added by linear interpolation, if the rotation
between two samples is above 90 ° or 4500 °/s for a
50 Hz sampling rate. Second, data points are removed if
the displacement between two points is below a thresh-
old of 0.05 cm or 2.5 cm/s for a 50 Hz sampling rate.
Speeds below 2.5 cm/s are considered to indicate that the
rat is stationary, as data shows that the distribution of
recorded speeds peaks around 10 cm/s and tails off
toward 50 cm/s. Third, data points are added by linear
interpolation between samples that lead to linear velocities
above 60 cm/sec. This pre-processing changes less than 17 %
of the original data points, whereas Kalman filtering of the
trajectories would change all data points. After pre-processing
we assume that the trajectory is close to the actual body
motion of the rat.

The rat’s enclosure is modeled by a circular ground
platform that has a radius of 100 cm. This radius is
15 cm larger than the cage’s radius used in the exper-
iment. We added an annulus of 15 cm in the simula-
tions to allow for sensing visual motion in cases where
the camera is close to the boundary and the optical axis
points toward the boundary. The recorded positional
data can be modeled by two degrees of freedom: A
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linear velocity parallel to the ground and a rotational
velocity around the axis normal to the ground. In our
simulation the camera is shifted and rotated, and ana-
lytical flow is calculated using a depth map computed
by ray-tracing.

Figure 1(a) illustrates the rat sitting on the ground with its
field of views for left and right eye which we model as a
single visual field of view excluding binocular vision. The

nodal point of the modeled camera is at height h above the
ground and the y-axis of the camera’s coordinate system has
a tilt angle of γ with respect to the ground plane (Fig. 1(b)).
Positive tilt angles γ rotate the camera downward, negative
ones upward. To model the field of view we use a spherical
camera (Fig. 1(c)). Projections of a labyrinth texture tiled on
the ground for this spherical camera are shown in Fig. 1(d)-
(f). In the next paragraph we define the projection function

Fig. 1 Our model for visual image motion of a rat. (a) A virtual rat is
simulated running along recorded trajectories (Hafting et al. 2005).
Optic flow is modeled for the overall visual field, which includes left
and right hemisphere. (b) Shows the eye-height h and tilt angle γ of the
optical axis with respect to the ground; adapted and redrawn from
Adams and Forrester (1968), their Figure 6. (c) Visual image motion
is generated for sample points P on the ground as the rat is moving
parallel to the ground or rotating around an axis normal to the ground.
This drawing is for γ00 ° tilt and, thus, the linear velocity is along the
optical axis and the rotational velocity around the y-axis (yaw). (d-f)

Projections of a regular labyrinth texture (inset in d) tiled on the ground
floor within ±120 ° azimuth and ±60 ° elevation using the spherical
camera model. The nodal point of the spherical camera is h03.5 cm
above the ground plane 120 x 120 cm large and is placed in the center
of the plane. Tilt angle varies, in (d) it is γ0-30 °, in (e) γ030 °, and in
(f) γ00 °. All three images were rendered with Persistence of Vision
Pty. Ltd. (2004). Note that the labyrinth texture does not coincide with
some maze-task but has only been chosen for visualization purposes.
Instead the simulated rat can freely move on a ground platform
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and a model of visual image motion for this spherical
camera model.

2.2 Modeling the rat’s visual image motion using a spherical
camera

Why do we use a spherical camera to model the visual
image motion sensed by rats? First, rat eyeballs are more

similar to spheres than a plane, as used in a pinhole camera.
Second, with a spherical camera we can model a field of
view larger than 180 °, impossible with a single pinhole
camera.

Visual image motion for a spherical camera with its
center of rotation, nodal point, and center of the sphere in
the same point, is described in spherical coordinates by
(Rieger 1983; Calow et al. 2004)1:

�
θ�
ϕ

 !
¼ 1

D
� cosðθÞ

cosðϕÞ 0 sinðθÞ
cosðϕÞ

sinðθÞ � sinðϕÞ � cosðϕÞ cosðθÞ � sinðϕÞ

 ! 1 0 0
0 cos g � sin g
0 sin g cos g

0@ 1A vx
vy
vz

0@ 1A0@ 1A
þ

sinðθÞ�sinðϕÞ
cosðϕÞ �1 cosðθÞ�sinðϕÞ

cosðϕÞ
cosðθÞ 0 � sinðθÞ

 ! 1 0 0
0 cos g � sin g
0 sin g cos g

0@ 1A wx

wy

wz

0@ 1A0@ 1A ; ð1Þ

where θ denotes the azimuth angle, ϕ the elevation
angle, and γ the tilt angle between optical axis and
self-motion vector that is always parallel to the ground
(see Fig. 1(b)). Azimuth is measured in the xz-plane
from the z-axis that points forward. Elevation is mea-
sured from z'-axis in the yz'-plane where z' denotes the
z-axis rotated by the azimuth angle. We use a left-
handed coordinate system. In this system the z-axis
points forward, the y-axis points to the top and the x-
axis points to the right (see also Fig. 1(c)). The 3D
linear velocity ~v ¼ ðvx; vy; vzÞt and the 3D rotational
velocity ~w ¼ ðwx; wy; wzÞt cause temporal differentials
for azimuth θ

:

and elevation f
:
assuming a differential

motion model that neglects higher order temporal differ-
ences, like accelerations (Goldstein et al. 2001; Longuet-
Higgins and Prazdny 1980). The super-index ‘t’ denotes the
vector-transpose. Furthermore,D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2 þ Y 2 þ Z2
p

denotes
the absolute distance for a point P0(X,Y,Z) in Cartesian
coordinates.

This model for visual image motion has several proper-
ties. First, translational and rotational components are line-
arly superimposed. Second, only the translational
component depends on distance D. Third, this depth depen-
dence is reciprocal. Thus, farther points have lower veloci-
ties than closer points in terms of temporal changes of
azimuth and elevation. Fourth, the image motion that is
denoted in differential changes of azimuth and elevation
angles is independent of the radius of the sphere that models
the rat’s eyeball.

Based on the data we assume that the rat is moving
tangent to the recorded trajectory in the 2D plane. This

simplifies the model’s linear velocity to be ~v ¼ ð0; 0; vzÞt
and the rotational velocity to be ~w ¼ ð0; wy; 0Þt. Including
these constraints Eq. (1) reduces to a model of visual image
motion for curvilinear motion:

�
θ�
ϕ

 !
¼ vz

D

sinðθÞ
cosðϕÞ � cosðgÞ

cosðϕÞ � sinðgÞ þ cosðθÞ � sinðϕÞ � cosðgÞ

 !
þwy

� cosðgÞ þ cosðθÞ�sinðϕÞ
cosϕ � sinðgÞ

� sinðθÞ � sinðgÞ

� � :

ð2Þ
In this model self-motions are restricted to the rotational

velocity ωy around an axis normal to the ground and the linear
velocity vz parallel to the ground. If tilt is unequal to zero, the
optical axis of the camera system changes while the self-
motion vector remains constant.

Since we do not explicitly model both eyes but rather the
entire visual field, we assume this field to extend ±120 ° hori-
zontally and ±60 ° vertically and 0 ° horizontally is aligned with
the optical axis (z-axis). Retinal input projects to lateral genicu-
late nucleus (LGN) in these ranges in rats (Montero et al. 1968).

Absolute linear velocity (speed) and depth appear to be
invariant in Eqs. (1) and (2). Any factor multiplied to both
variables~v for Eq. (1) or vzfor Eq. (2) and D leads to the same
spherical image motion. For instance, projected points have
the same displacement in angular coordinates either traveling
twice as fast or all sample points being two times closer. To
resolve this invariance further constraints are required and we
provide one solution relevant for rats next.

2.3 Constraining the linear velocity by sampling
from a plane of known distance and spatial orientation in 3D

To resolve the invariance between absolute velocity and
depth, visual image motion is constrained to sample points

1 Note that these references use different definitions for their coordi-
nate system.

J Comput Neurosci (2012) 33:475–493 479



from a plane of known distance and 3D orientation. Evidence
for such a constraint is provided from a different species,
namely frogs, which use “retinal elevation”, the distance of
the eyes above ground, to estimate the distance of prey (Collet
and Udin 1988). This plane constraints distance values to be

Dðθ;ϕÞ ¼ h

nx � sinðθÞ � cosðϕÞ þ ny � sinðϕÞ þ nz � cosðθÞ � cosðϕÞ ;

ð3Þ
where ~n ¼ ðnx; ny; nzÞt is the normal vector of the plane and
h the plane’s distance measured along the plane’s normal. In
our simulations we further constrain the normal vector by tilt
angle γ between the optical axis and the ground-plane; thus,
~n ¼ � sin f sin g; cos g;� cos f sin gð Þ which depends now
also on the allocentric camera or head directionφ. This normal
vector ~n can be computed, e.g., by using Rodrigues rotation
equation and rotating the normal vector (0,1,0) around the
axis (−cosϕ,0,sinϕ). Plugging in both constraints gives the
constrained model for visual image motion:

�
~y ¼ 1

h �~a � vz þ~b � wy with
�
~y ¼

�
θ�
ϕ

 !
;

~a ¼ ð� sinðfÞ � sinðgÞ � sinðθÞ � cosðϕÞ
þ cosðgÞ � sinðϕÞ � cosðfÞ � sinðgÞ � cosðθÞ � cosðϕÞÞ;
�

sinðθÞ
cosðϕÞ � cosðgÞ

cosðϕÞ � sinðgÞ þ cosðθÞ � sinðϕÞ � cosðgÞ

 !
and~b ¼ � cosðgÞ þ cosðθÞ�sinðϕÞ

cosϕ � sinðgÞ
� sinðθÞ � sinðgÞ

� �
:

ð4Þ

Note that this constrained model of visual image motion is
not directly accessed by the retina rather it provides a constraint
for flow templates that are specific for flow sampled from the
ground of known distance. Illustrations of constrained spheri-
cal motion flows for forward motion, rotational motion, and
their combination are shown in Fig. 2. For the model we
assume flow templates to be realized by cortical areas in the
rat’s brain that are analogous to the middle temporal area (MT)
and medial superior temporal (MST) in the macaque monkey
(Graziano et al. 1994; Duffy and Wurtz 1995; Duffy 1998).

2.4 Modeling of the rat’s sensed optic flow by applying
Gaussian noise to analytically computed visual image
motion

Optic flow is typically estimated from changing brightness
values and, therefore, contains errors introduced by the sens-
ing and estimation process. Here, we assume that these errors
occur in the sensing of spatial and temporal changes in bright-
ness. These errors are modeled by a Gaussian distribution
function, whereas all three variables, two for spatial changes
and one for temporal changes, are independent (Simoncelli et
al. 1991; their Eq. (7)). Under these assumptions it follows

that the distribution of image velocity estimates, using a linear
least squares model, is again Gaussian distributed. Thus, in
order to model the optic flow that is available to the rat, we
assume additive Gaussian noise for the temporal changes of
azimuth and elevation angle:

�eθ�eϕ
 !

¼
�
θ�
ϕ

 !
þ

�
θn�
ϕn

 !
with �

θn
; �ϕn

2 Nμ¼0;σflow; ð5Þ

where Nμ¼0;σflow denotes a normal distribution function with

zero mean and σflow as standard deviation. Note that
�
ϕ and

�
θ

denote the model of visual image motion and
�eϕ and

�eθ the
modeled optic flow assuming Gaussian noise.

2.5 Estimating linear and rotational velocity
using a template model

Linear and rotational velocity for the constrained model of
visual image motion from Eq. (4) can be estimated, using the
idea of template models: To explicitly evaluate an objective
function defined by using neural properties (Perrone 1992;
Perrone and Stone 1994). A challenge for template models
that estimate self-motion is the 6D parameter space composed
of two parameters for the linear velocity direction, one param-
eter for depth, and three parameters for rotational velocities.
All these parameter intervals are sampled explicitly. For in-
stance, for 10 samples in each interval this results in 106

samples for parameters where the sensed flow field has to be
compared to all these 106 flow templates. This is a computa-
tional expensive approach and, therefore, typically template
models use constrained self-motions, e.g. fixating self-
motions (Perrone and Stone 1994).

Our constrained model in Eq. (4) has only two parame-
ters: Linear and rotational velocity. Instead of sampling
these two dimensions combined, we look for a method of
separating the sampling of linear velocity (depth) from that
of rotational velocity. Assume that the temporal changes for

azimuth and elevation are given by
�bθ and

�bϕ , respectively,
which is denoted by the hat-symbol. In the simulation these

inputs are from Eq. (5); formally
�bθ ¼ �eθ and

�bϕ ¼
�eϕ . To

estimate only the linear velocity we multiply the Eq. (4)

by ~b?, that is a vector orthogonal to ~b. This multiplication
annihilates the dependency on rotational velocity, leaving only
the dependency for linear velocity. An objective function
fmatch,v using Gaussian tuning with standard deviation σv for

the sensed input flow
�
~by including this constraint is given by

fmatch;vðvz;jÞ ¼ 1

n

Xn
l¼1

exp � ð
�
~by t

l
~b?l � h�~atl~b

?
l � vz;jÞ

2

2 � σv
2

0@ 1A: ð6Þ
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In this Eq. (6),~al denotes the vector~a from Eq. (4) that is
sampled at locations indexed by l. For our sensor layout of
the spherical camera model l is a linear index for the 20×40
grid of elevation and azimuth angles. The orthogonal com-

plement ~b?l of vector ~b is sampled at the same locations in
20×40 grid. The j-th linear velocity sample is vz,j. Since the
model for visual motion is consistent above the entire visual
field, tunings from all n locations are averaged. This last
assumption excludes independently moving objects and
deformations that are not induced by self-motion. The ob-
jective function fmatch,ω with the standard deviation σω for
rotational velocities is given by using the two constraints of
Eq. (4) and the above estimated velocity estimate denoted
by bv:
fmatch;wðbv;wy;kÞ ¼ 1

n

Xn
l¼1

exp �
�
~by l � 1

h~al � bv�~bl � wy;k

��� ���2
2 � σw

2

0B@
1CA:

ð7Þ

Flow templates for all common self-motions are created a

priori by using expressions from Eq. (4), like~a and~b. Every

sensed flow field is then compared to all these templates and
its match is computed by Eqs. (6) and (7) for linear and
rotational velocities, respectively. This method provides
match values for each velocity parameter. All match values
together define a profile. Next, we will describe methods of
estimating velocities from such profiles.

How do we estimate velocities based on the profiles
defined by values about the match between template and
input flow? One solution is to return the sampled velocity
value that corresponds to the maximum match value in the
profile, e.g.bvz ¼ argmaxjfmatch;vðvz;jÞ. However, estimates of
such a method are always restricted to the discrete sampled
velocities. An alternative method that overcomes this limi-
tation is a ‘vector’-sum computation. This method sums the
product of all velocities—either linear or rotational—multi-
plied by their corresponding value from the profile of match
values and, finally, divides the summed products by the sum
of all match values. Such an evaluation of the response
profile allows for the interpolation between different veloc-
ities. However, this method has a sample bias, if the objec-
tive function is not dropping fast enough to zero at the
boundaries of the sample interval. As a result a sample bias
toward lower or higher velocities can happen at the higher or

Fig. 2 Visual motion fields for a spherical camera model for varying
tilt and self-motion defined as a linear speed of vz02 cm/s and/or a
rotational velocity of ωy015 °/s. (a-c) Shows motion fields generated
by the forward motion, in (a) for γ0-30 °, (b) for γ00 °, and (c) for γ0
30 °. (d-f) Shows motion fields generated by a rotation along an axis
orthogonal to the ground. Roll is very dominant in the motion field of
(f), which is a result of the camera pointing downward while rotating
around an axis orthogonal to the ground that is not the vertical axis of

the camera. (g-i) Depict motion fields that are the result of adding
motion fields from the first and second row. These are examples of
motion fields generated by curvilinear motion. The vanishing point in
(i) that appears around 90 ° azimuth and -20 ° elevation does not
denote the theoretical focus of expansion. Instead it shows the center
of motion that is the focus of expansion shifted by the rotational visual
motion component. In all plots, the x-axis to y-axis has an aspect ratio
of 1:2
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lower edge of the sample interval, respectively. To avoid
sample biases at boundaries we use another method, a local
vector summation. This is a combination of the above sug-
gested two methods and restricts the computation of the
vector sum to 2 % of sample values centered at the location
of the maximum value.

An evaluation of trigonometric functions for the construc-
tion of the templates is not directly necessary. Assume that these
flow templates with their trigonometric functions from Eq. (4)
are ‘hard-wired’ or trained during exposure to visual stimuli.
Then coefficients like sin(θ), cos(θ), … can be expressed as
weights for pooling local motion signals over the entire visual
space. Furthermore, different tilt angles γ and head direction
angles φ can activate different template representations.

Figure 3 shows example flow fields, response profiles,
and velocity estimates of our template model. Gaussian
noise superimposed to the image motion reduces the peak
height, compare Fig. 3(b) and (c) with (e) and (f) but the
location of the peak remains. For stronger noise the peak
height will be decreased even further, and its position might
shift as well, especially if the peak height is falling below
the noise floor. In general the peak height could be inter-
preted as certainty of a match.

The difference in the response profiles for linear and rota-
tional velocity is due to the qualitative difference between
flows generated for these. A linear velocity in the interval of
10 cm/s to 60 cm/s introduces slower velocity vectors that are
more susceptible to noise than the larger velocity vectors
generated by rotational velocities in the range of ±4,500 °/s.
These slower vectors for linear velocity are stronger influ-
enced by noise than the larger vectors generated by rotational
velocities. As a result, the profile for linear velocity appears
“narrower” than that of rotational velocity. Note, this obser-
vation depends on our assumption that noise is independent of
the length of flow vectors, see also Eq. (5).

A temporal integration of linear and rotational velocity
estimates provides an approximation for the rat’s position
with respect to some reference. But, these velocities
directly cannot explain the regular firing structure of grid
cells. Several models (Fuhs and Touretzky 2006; Burgess
et al. 2007; Hasselmo 2008; Burak and Fiete 2009) have
been proposed to link 2D velocity vectors in the plane to
the firing pattern of grid cells. In the next paragraph we
review an oscillatory interference model and show how
estimates of linear and rotational velocity are integrated
into this model.

Fig. 3 Values for matches of our template model for analytical visual
motion and optic flow modeled by visual motion with superimposed
Gaussian noise are shown. (a) Motion field without noise and a tilt
angle of γ030 °. (b) Profile for matches of linear velocities sampled in
the range from 2 cm/s to 60 cm/s. (c) Match values for rotational
velocities within ±4,500 °/s. (d) Optic flow defined as the visual
motion field from (a) with independent Gaussian noise added to each

flow component. (e and f) The profiles of match values for velocities
have a decreased peak height but the position of their maximum peak
remains. All flow fields are generated taking sample point 10 of the
pre-processed rat trajectory ‘Hafting_Fig2c_Trial1’ from Hafting et al.
(2005). The aspect ratio between x-axis (azimuth) and y-axis (elevation)
is 1:2
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2.6 Modeling of grid cell firing by temporal integration
of estimated velocities within an oscillatory
interference model

To solve the problem of dead-reckoning or homing several
species rely on path integration (Müller and Wehner 1988).
Models for grid-cell firing use this idea and integrate 2D velocity
signals. Such a 2D velocity~v2D includes the current orientation
ϕ(t) of the rat’s head in a 2D world and the linear speed vz(t):

~v2DðtÞ ¼ vzðtÞ � cos8ðtÞ
sin8ðtÞ

� �
with8ðtÞ ¼

Z t

0

wyðsÞ ds ð8Þ

The rat’s orientation 8(t) in our case is calculated by
temporally integrating all rotational velocities.2 Therefore,
the rotational velocity has to be estimated besides the linear
velocity, since it indicates the orientation of the linear ve-
locity with respect to an external frame of reference, e.g. the
middle of the cage. Linear and rotational velocity in Eq. (8)
is estimated with the template model described in
Section 2.5.

This 2D velocity estimate from Eq. (8) is temporally
integrated within the oscillatory interference model
(Burgess et al. 2007; Hasselmo 2008):

spikeðtÞ ¼ 1 ðQ3
k¼1

cosðw � tÞ þ cosðw � t þ w � b � Rt
0

*vt
2D
ðsÞ �~bk dsÞÞ>Θ

0 otherwise

8<: : ð9Þ

This model has two oscillations, the somatic oscillation ω
and the dendritic oscillation w � ðt þ b � R :::Þ and the latter
one is the somatic oscillation modulated by the integrated
velocity signal and by the parameter β. It is assumed that the
oscillation ω is provided by theta rhythm oscillations pro-
vided by the medial septum (Brandon et al. 2011). Further-
more, in the model three oscillations interfere at the soma,

whereas each oscillation occurs along a basis vector ~bk. To
form a hexagonal grid with vertices corresponding to high
grid cell firing, at least two basis vectors rotated to one
another by arbitrary multiples of 60 ° are required. In our

implementation we chose the three vectors: ~b1 ¼
ðcos 0�; sin 0�Þt , ~b2 ¼ ðcos 120�; sin 120�Þt , and ~b3 ¼
ðcos 240�; sin 240�Þt . Each vector alone generates a band
of firing with an inter-band distance L01/(β ⋅ f) because the
constructive interference between a purely somatic oscilla-
tion f0ω/(2π) and dendritic oscillation f+ f ⋅ β results in an
oscillation with the overall envelope of frequency f+ f ⋅ β –
f0 f ⋅ β. The overlay of all three dendritic oscillations and
bands reaches values above threshold Θ in vertices of a
hexagonal grid. The hexagonal grid structure originates
from the above defined basis vector system. The grid dis-

tance is G ¼ 2=ð ffiffiffi
3

p � b � f Þ . All parameter values of the
model are listed in Table 1.

3 Results

Data on rat’s visual input, head-body position, and functions
of cortical higher-order visual motion processing is largely
unknown. Therefore, we assume parameter ranges for these

unknowns that are simulated. The extraction of optic flow
from visual input is modeled by providing analytical visual
motion for a spherical camera superimposed with additive
Gaussian noise. In the first simulation, the standard devia-
tion σflow of this Gaussian noise varies between 0 °/frame
and 50 °/frame or 0 °/s and 2,500 °/s assuming a temporal
sampling of 50 Hz. Since the head’s position of the rat is
tracked in a 2D plane the tilt angle γ of the head with respect
to the ground is not captured by the recording during the
experiment. In the second simulation, we assume a range of
tilt angles γ varying from –45 ° to +45 °. In the third
simulation, the number of flow templates varies between
10 and 568. For the fourth simulation we vary the sub-
threshold frequency f in the oscillatory interference model
that changes the grid spacing. Table 2 provides a summary
of parameter values in these simulations.

3.1 Error statistics of the estimated linear and rotational
velocity

Simulated optic flow deviates from the model of visual
image motion due to the Gaussian flow noise. Thus, we
expect the template models’ estimates to have errors. An-
other source of errors is the finite sampling of the velocity
spaces due to interpolation between sample points, although
sampling intervals are adapted to the data. But what does the
statistics of these errors look like? In three simulations we

2 As an alternative this signal φ(t) can be provided by the head
direction system. Such a signal has been used in Eq. (4) in cases where
the ground’s normal vector depends on head orientation. This is the
case for non-zero tilt angles.
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replay three recorded trajectories to the model and estimate
self-motion from optic flow. Figure 4 depicts the error
statistics for linear and rotational velocities that includes
all three trajectories. Errors are defined as the estimate
minus ground-truth value. Thus, errors of positive sign
relate to an overestimation and errors of negative sign to
an underestimation of velocity. For the first simulation of
varying Gaussian flow noise, errors in the estimated linear
velocity (Fig. 4(a) and (b)) and the rotational velocity (Fig. 4
(c) and (d)) increase linear in terms of their standard devi-
ation. Varying tilt shows an effect on the estimation (Fig. 4
(e)-(h)). Downward tilts increase the length of azimuth and

Table 1 Parameters and their values set in simulations for the spherical camera model, template model, and oscillatory interference model

Description of parameter Value

Pre-processing of Simulated trajectories a

Adds points for rotations above (90 ° · 50 Hz) 4,500 °/s

Removes points for linear velocities below (0.05 cm · 50 Hz) 2.5 cm/s

Adds points for linear velocities above (1.2 cm · 50 Hz) 60 cm/s

Environment of a ground plane

Radius of the circular ground platform b 100 cm

Number of triangles to represent the ground platform 32

Spherical camera model

Horizontal field of view 240 °

Vertical field of view 120 °

Number of sample points in vertical dimension c 40

Number of sample points in horizontal dimension c 20

Minimum distance for a sample point Dmin00 cm

Maximum distance for a sample point Dmax01000 cm

Eye-height above ground h03.5 cm

Tilt angle of the optical axis with respect to ground γ00 °

Template model

Standard deviation of the objective function for the linear velocity vz σv010 °/s

Standard deviation of the objective function for the rotational velocity ωy σω025 °/s

Interval of rotational velocities ωy,k Z {±4,500 °/s}

Samples for rotational velocities k01…451

Interval for linear velocities vz,j Z {2…60 cm/s}

Samples for linear velocities j01…117

Oscillatory interference model

Frequency d f07.38 Hz

Parameter e β00.00385 s/cm

Angles for basis vectors φ100 °, φ20120 °, φ30240 °

Threshold value for spiking Θ01.8

a File names of the trajectories included in the simulation are ‘Hafting_Fig2c_Trial1’, ‘Hafting_Fig2c_Trial2’, and ‘rat_10925’ from the Moser lab:
http://www.ntnu.no/cbm/gridcell. For the simulations we extracted the maximum subsequence without not-a-numbers
b In the simulation the size of the circular ground platform was extended by 15 cm on each side with respect to the original size of a radius of 85 cm.
This extension provides sample points at the outmost boundary of 85 cm and allows for picking up optic flow
c This refers to an image resolution of 40×20 pixels or n0800. Note that image flow may not be acquired for each pixel because of the tilt angle and
simulating an open cage, see Figs. 2 and 3
d Frequency f has been fitted to subthreshold oscillations of entorhnial cells (Giocomo et al. 2007)
e Parameter β has been fitted to the measured subthreshold oscillations for neurons and their simulated grid cell spacing (Giocomo et al. 2007)

Table 2 Parameter values of our model for the simulations

Simulation
type

σflow
(°/frame)

γ (°) Templates Frequency
(Hz)

Flow noise 0…50 0 568 7.38

Tilt angle 25 –45…+45 568 7.38

Templates 25 0 10…568 7.38

Subthreshold
frequency

25 0 568 3.87…7.38
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elevation vectors. This explains the decrease of error for
conditions where gaze is directed down toward the ground.
The error in rotational velocity estimates is symmetric
around 0 ° tilt where it is smallest (Fig. 4(e)-(h)). The third
simulation, that of varying the number of flow templates,
shows large errors in the estimate of linear (Fig. 4(i) and (j))
and rotational velocity (Fig. 4(k) and (l)) for a small number
of templates. This error drops to a lower nearly constant
level around a number of 150 flow templates (Fig. 4(j) and
(l)).

3.2 Position errors for integrating velocity estimates

After looking into the error statistics of velocity estimates
we now study the position error that occurs if temporally
integrating estimated velocities. As error measures we report
the Euclidean distance and angle between the ground-truth

and estimated position. Figure 5 shows mean distance and
angle errors for analytical visual image motion (σflow00 °/
frame) computed by using the three trajectories. Errors in
distance are within 3 cm and errors in angle within 2 °
integrating over 18 min or 54,000 individual estimates
(Fig. 5(a)-(b)). For the Gaussian flow noise of σflow025°/
frame mean error range within 15 cm for the distance and
6 ° for angles. These results look promising and suggest that
integration of optic flow into a path integration system can
be helpful.

3.3 Grid scores for varying Gaussian flow noise, tilt angles,
and number of templates

What is the effect of the errors in the velocity estimates on
grid cell firing patterns? Estimated velocities are integrated
into the velocity controlled oscillatory interference model

Fig. 4 Errors for self-motion estimation while varying noise, tilt, or
the number of flow templates. (a-d) shows the errors for varying
Gaussian noise, (e-h) tilt angles, and (i-l) number of templates with
σflow025°/frame in the latter two cases. Normalized histograms (a, c, e,
g, i, k) are individually computed for every parameter value. Normal-
ized counts for each bin are log-enhanced and displayed in gray-values

ranging from black to white encoding low and high counts. The
standard deviation and mean value of errors are displayed in the curve
plots (b, d, f, h, j, l). Note that the intervals for plots (j) and (l) are
different from those in previous rows. Legends are printed atop of each
column. The error statistics includes three trajectories
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Fig. 5 Position errors of temporally integrated estimates stay within (a)
3 cm Euclidean distance error and (b) 2 ° angle error for analytical image
motion and within (c) 15 cm distance error and (d) 6 ° angle error for
simulated optic flow that includes Gaussian noise with σflow025 °/frame.

(e and f) Shows the distance and angle error for estimates from optic flow
with Gaussian flow noise σflow025 °/frame where every Treset01 min a
reset to the ground-truth position and orientation happens. Note the
difference in intervals for the y-axis between panels

Fig. 6 Examples for firing patterns of varying grid score (GS). The
first row shows the different trajectories (black traces) with super-
imposed locations where a spike occurred (red dots). In the second
row these spikes are registered in a 201×201 pixels image and are
divided by the occupancy in these locations. Both registered spikes and
occupancy are convolved with a squared Gaussian filter with nine
pixels length and two pixels standard deviation. (a) A moderate
amount of Gaussian flow noise (σflow012.5 °/frame) leads to a GS of

1.7. Increasing the amount of noise gives GS of 1.5 in (b), 1.0 in (c),
0.5 in (d), and 0.1 in (e). All values are for a reset interval of Treset0
16.67 min and parameters of Gaussian flow noise σflow are given atop
of each trajectory plot. The simulation uses the trajectory ‘Hafting_-
Fig2c_Trial1’ from Hafting et al. (2005). Note that the response pat-
terns in the lower row are individually scaled to min (blue) and max
(red) values of spikes per second. Regions plotted in white have never
been visited, in this example the gap in direction “North”
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that was reviewed in Section 2.6. Grid cell firing patterns are
shown in Fig. 6. To quantify the grid-likeness of these
patterns a grid score (GS) measure is computed (Langston
et al. 2010; their supplement material on page 11). This GS
ranges within the interval [–2…+2]. Intuitively, the GS is
high if the same spike pattern matches itself for rotations of
60 ° and multiples of 60 ° (hexagonal grid) and the GS is
low if the grid matches itself for rotations of 30 ° and
multiples of 30 ° (e.g. a squared grid). We illustrate this
GSs measure in Fig. 6 by showing examples of grids of
different scores. Note that for this data 1.7 is the highest GS
value that could be achieved.

For the spike pattern in Fig. 6(a) we estimated the grid
distance from the data by clustering the spikes using the k-
means algorithm (10 retrials). The mean between-cluster dis-
tance for direct neighboring vertices is approximately≈39 cm 3

and the theoretical value is calculated asG ¼ 2=ð ffiffiffi
3

p � f � bÞ or
G ¼ 2=ð ffiffiffi

3
p � 7:38Hz � 0:00385 sec =cmÞ � 41cm.

Does a reset mechanism that re-locates the rat with a certain
periodicity Treset help to improve the grid cell firing? Besides
optic flow other cues, such as visual landmark cues, somato-
sensory cues, or vestibular cues are available to the rat. There-
fore, a reset mechanism that uses these cues is included into
the simulation. This mechanism validates the flow integrated
position with the position estimates from other cues. In the
simulation the velocity integrated position is corrected to its
ground-truth position using the recorded trajectory. This cor-
rection takes place after each temporal period Treset .

4 In the
simulation we vary this temporal period between 0.83min and
16.67 min in steps of 0.83 min. This gives a 3D plot reporting
GS over two varying parameters. Figure 7 shows these 3D
plots, using a color code for the GS as third dimension. For
varying Gaussian noise (y-axis) and varying reset intervals (x-
axis) a transition between high GSs (>1) to GSs (<1) occurs
for a standard deviation of ≈35 °/frame, largely independent
of the reset interval Treset (Fig. 7(a)). For a tilt angle γ≈0 ° GSs
are higher than 1.5 (Fig. 7(b)) mainly due to the low error in
rotational velocity (compare with Fig. 4(g)). Grid scores for
around 150 flow templates change rapidly from above one to
below one (Fig. 7(c)). Different reset intervals have a small
effect visible by the drop being aligned with the x-axis or reset
interval.

Varying the frequency parameter of the oscillatory inter-
ference model influences the grid spacing. For instance, for
f07.38 Hz the grid spacing is 41 cm and for f03.87 Hz the
grid spacing is 77 cm. This varying grid spacing shows an

effect coupled to the reset interval Treset (Fig. 7(d)). For a
reset interval above Treset012 min and a frequency below
5.5 Hz the GS is ≈1. This corresponds to the upper right
corner in the 2D plot in Fig. 7(d). For frequencies above
5.5 Hz and a reset interval above ≈9 min the GS is ≈1.
Other regions have a GS>1. Our interpretation is that for
low frequencies only a few vertices—around seven—are
marginally present and, thus, no full clear cell of a hexago-
nal grid, consisting of seven vertices, is formed for all
trajectories (although it is in the example trajectory shown
in Fig. 7(e) 1). This partial occurrence of less than seven
vertices reduces the GS. For slightly higher frequencies
≈4.5 Hz one full cell of the hexagonal grid is present and,
thus, in these cases a higher GS of ≈1.5 is achieved. For a
further increased frequency of >5 Hz, multiple additional
firing fields of the grid are present (Fig. 7(e) 3). All these firing
fields have to be accurate and this reduces the GS to ≈1.

4 Discussion

We investigated the role of optic flow available to rats and
their possible influence on grid cell firing in a modeling study.
Our model uses a spherical camera to simulate the large visual
field of rats and models the sensed optic flow as analytical
visual image motion with superimposed Gaussian noise. This
sensed flow is compared to flow templates for linear and
rotational velocities that are sampled in intervals according
to the statistics of these velocities in recorded rat trajectories.
Maximum responding templates and their neighbors are used
to estimate linear and rotational velocity. These estimates are
fed into the velocity controlled oscillator model to produce
grid cell firing. Grid scores from this overall model using optic
flow as input are above 1.5 even for Gaussian flow noise with
a standard deviation up to 35 °/frame. In addition our model
requires at least ≈100 flow templates to achieve grid scores
above one (GS>1). The tilt angle of the simulated spherical
camera with respect to the ground affects the grid score.
Overall our modeling study suggests optic flow as a possible
input to grid cells beside other cues.

4.1 Template models for self-motion estimation using optic
flow

Various template models have been suggested for self-
motion estimation from flow. Perrone (1992) suggested a
template model that estimates, first, rotational velocities
from the input flow and, second, subtracts the flow con-
structed by these estimated rotational velocities from the
input to estimate the linear velocities of self-motion. Later,
Perrone and Stone (1994) modified this model by setting up
flow templates for common fixating self-motions for human
locomotion. Lappe and Rauschecker (1993) used a subspace

3 Several runs of the k-means algorithm can give slightly different
values due to a randomized initialization of the initial cluster centers.
4 To avoid a correlation effect between reset times and specific velocity
configurations in the data, we evaluate ten different phase values, the
onset times of the reset mechanism with respect to time zero that are
regularly distributed within the duration of two resets.
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of flow constraints that is independent of the depth and
rotational velocities. The remaining constraints that depend
on linear velocity only are used to set up flow templates. In
contrast to these models, we simplified the parameter space
by restricting the rat’s body motion to curvilinear path
motion that is composed of linear velocity parallel to the
ground and a rotational velocity normal to the ground. This

reduces the degrees of freedom from six to two that are
estimated independently by two 1D spaces of flow tem-
plates: One for linear velocities and one for rotational ve-
locities. Similar to Perrone’s (1992) template model, the
accuracy of self-motion estimation in the presence of flow
noise increases with an increasing number of samples, given
that the noise for samples is independent (Perrone 1992; his

Fig. 7 In most cases grid-cell firing could be achieved by integrating
optic flow input when assuming a grid score (GS) greater than one. (a)
Shows the GS in color (blue 0 and red 2) for different reset intervals (x-
axis) and Gaussian flow noise (y-axis). A legend for the color code is
printed on the right side. Black contour lines help to identify different
regions with similar GS. Subsequent plots use the same color coding
and show the GS for a varying tilt angle in (b), for a varying number of

flow templates in (c), and for a varying frequency in (d). (e) Examples
of firing patterns from the simulation in (d) as indicated by the number
in circles for the trajectory ‘Hafting_Fig2c_Trial1’ from Hafting et al.
(2005). Note that these grid scores differ from those shown in (d) that
are mean values computed by using the three trajectories as noted in
footnote ‘a’ in Table 1. For this plot we took the absolute value of the
GS before computing the mean for different phases and trajectories
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Fig. 5). For that reason we did not include the number of
sampled flow vectors as a parameter of our simulations.

Although sharing this behavioral similarity, our template
model is conceptually different from prior ones. It uses a
spherical camera model instead of a pinhole camera. It
resolves the scaling invariance between linear velocity or
speed and absolute depth by assuming points of flow sampled
from a ground plane and knowing the distance and angle of
the camera with respect to that plane. Our model extends prior
ones by allowing for variable tilt of the camera that leaves the
direction of self-motion unaffected. In our model a separation
of estimating linear and rotational velocity is achieved by
multiplying the flow equation by a vector orthogonal to the
rotation induced flow (see Eq. (6)). This separation leads to a
speed-up of simulation times and requires less storage—or
fewer “template neurons”. Rather than testing all combina-
tions of linear and rotational velocities that would lead to a
squared complexity in match calculation and storage, we
tested linear and rotational velocities separately. This required
only linear complexity in the number of samples in each
dimension. This “computational trick” was applied for the
convenience of the simulations rather than assuming the same
trick is being applied in the rat visual system. In sum, our
model provides several extensions compared to prior template
models.

4.2 Models for grid cell firing integrate linear 2D velocities

Models for grid cell firing temporally integrate a 2D velocity
signal (Burgess et al. 2007; Hasselmo 2008; Burak and Fiete
2009; Fuhs and Touretzky 2006; Mhatre et al. 2012). None of
these models elaborate on the details of estimating this 2D
velocity signal, other than assuming this signal being split into
a head direction signal assumed to be provided by the head
direction cell system and a linear speed signal assumed to be
provided by the vestibular system. A realistic model would
estimate the 2D velocity that in turn introduces errors that
could be characterized by a noise model. However, noise is
not assumed in the velocity signal in models of grid cell firing.
Instead noise is assumed in the neural population of attractor
models (Fuhs and Touretzky 2006; Burak and Fiete 2009) or
in the phase of the oscillatory interference models (Burgess et
al. 2007; Zilli et al. 2010).

In our study we elaborated on the modeling of the veloc-
ity signal, suggesting optic flow as an alternative cue be-
sides the traditional view that velocities are supported by the
vestibular system. This approach naturally leads to errors in
the 2D velocity signal, as the velocity signal is estimated
from optic flow. Our analysis of errors shows that most
parameter settings in our model of self-motion estimation
and optic flow allow for path integration that is accurate
enough to produce the grid cell’s typical firing pattern.

4.3 Many species use optic flow for navigation and depth
estimation

Optic flow influences the behavior in many species. Pigeons
bob their heads during locomotion, which is mainly visually
driven. This bobbing supports the stabilization of vision dur-
ing the period of forward movement. The forward movement
is compensated by a backward motion of the head caused by
the bird’s neck zeroing its retinal motion (Friedman 1975).
Behavioral data shows that honeybees use image motion for
navigation in a corridor (Srinivasan et al. 1991). Mongolian
gerbils use motion parallax cues and looming cues to estimate
distance between two platforms where their task is to jump
from one platform to the other (Ellard et al. 1984). For
humans, Gibson (1979; page 111 ff.) highlights the relevance
of optic flow during aircraft landing and more generally
during locomotion. Humans can judge heading from transla-
tional flow within the accuracy of one degree of visual angle
(Warren et al. 1988). For flow including simulated or antici-
pated eye-movements the accuracy is within two degrees of
visual angle (Warren and Hannon 1990). Although, the reso-
lution of rat vision is poorer compared to that of humans we
suggest that rats are able to register large flow field motion as
generated by self-motion in a stationary environment. In turn,
such flow fields encode the rat’s self-motion which motivates
our hypothesis that rats might use optic flow among other
cues.

Studies using macaque monkeys reveal the underlying
neural mechanisms of optic flow processing and estimation
of self-motion. Neurons in area MST show selectivity for
the focus of expansion (Duffy and Wurtz 1995; Duffy 1998)
and to spiral motion patterns induced by a superposition of
forward motion and roll motion of the sensor (Graziano et
al. 1994). The selectivity for the focus of expansion is
shifted by eye-movements (Bradley et al. 1996). Studying
the connectivity, these neurons in area MST integrate local
planar motion signals over the entire visual field by spatially
distributed and dynamic interactions (Yu et al. 2010). Fur-
thermore, MST neurons responded stronger if monkeys had
a visual steering task compared to passive viewing. This
suggests that task driven activation can shape MST neuron
responses (Page and Duffy 2007). The activation of MST
neurons is influenced by objects moving independently in
front of the background (Logan and Duffy 2005). An elec-
trical stimulation of MST neurons during a visual navigation
task affected monkey’s decision performance, typically
leading to random decisions and these were amplified in
the presence of eye movements. This suggests that area
MST is involved in self-motion estimation with a correction
for eye-movements (Britten and Wezel 2002). An overview
of mechanism in area MST, its influence on steering, and the
solution of the rotation problem—the segregation of trans-
lation and rotation—is given by Britten (2008). No analogue
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to MST cells has been reported for rats, so far. But especially
monkey physiology suggests experimental conditions to
probe the optic flow system. Large field motion stimuli of
expansion or contraction with a shifted focus of expansion
or laminar flows are typical probes (see Figs. 2 and 3). In
our model we assumed cells tuned to these flows for the
estimation of linear and rotational velocity.

4.4 Optic flow cues might not be limited to influence
only grid cells

Several cell types could profit from optic flow information.
Border cells or boundary vector cells that respond as the
animal is close to a border with or without wall (Burgess
and O'Keefe 1996; Solstad et al. 2008; Lever et al. 2009;
Barry et al. 2006) could receive input from hypothetical cells
detecting self-motion patterns which are sensitive to different
distributions of image motion speeds. In a related study we
propose a model for boundary vector cell firing based on optic
flow for rats in cages with and without walls (Raudies and
Hasselmo 2012). In the presence of walls the challenge is to
achieve a flow-based segmentation of walls from ground, as
samples from these different surfaces play behaviorally dif-
ferent roles as we suggest. Flow samples from the ground
allow for the estimation of linear velocity, and thus could
facilitate grid cell firing. In contrast, flow samples from walls
do not encode velocity above ground, rather they allow for a
distance and direction estimate of walls if the velocity above
ground is known. Thus, flow samples from the ground com-
bined with flow samples from walls could facilitate the firing
of boundary vector cells that fire dependent upon the bound-
aries of the environment. Segmentation of flow can also be
used for the detection of physical drop-offs at the boundaries
of an environment (which activate boundary vector cells).
This is challenging in simulations if the rat is far away from
the drop-off because in that case the flow close to the horizon
at the drop-off has a small magnitude and the discontinuity in
the flow between the edge of the drop-off and the background
is hard to detect. In our related study we propose a mechanism
for the detection of drop-offs and the conversion into distance
estimates of the drop-off. Thismodel builds upon the spherical
model proposed here but is different in mechanisms and
modeled cell populations. Together, our model of grid cell
firing in this paper and the modeling of boundary vector cell
firing in the related study support the hypothesis that the firing
of these different cells might be facilitated by optic flow in a
multi-modal integration with other cues.

Head direction cells (‘compass cells’) could update their
direction specific firing in a 2D plane, e.g. for north, irre-
spective of the rat’s body or head position and rotation by
integrating the estimated rotational velocity from optic flow
(Taube et al. 1990). Grid cells (Hafting et al. 2005) and
place cells (O’Keefe 1976) could fire based on the temporal

integration of estimated linear and rotational velocity from
optic flow, the latter is suggested by our model.

4.5 Self-localization by cues other than optic flow

Experiments show the importance of vestibular and senso-
rimotor input to head direction cells which are part of a
neural network for rat’s navigation. Head direction cells in
the anterior thalamic nucleus depend on vestibular input, as
lesioning the vestibular system drastically reduces the co-
herence in directional firing of these cells (Stackman and
Taube 1997; their Figs. 1 and 4). Selectivity of these head
direction cells could be generated by angular head velocity
sensitive cells in the lateral mammillary nuclei (Stackman and
Taube 1997; Basset and Taube 2001). Persistent directional
firing of head direction cells in the anterior dorsal thalamic
nucleus and postsubiculum was not maintained while the rat
was moved in darkness into another room, whereas this trans-
fer excludes sensorimotor and visual cues. This shows that
vestibular input is not sufficient to maintain firing of head
direction cells in all cases (Stackman et al. 2003).

Various scenarios show the importance of landmarks, ei-
ther directly for behavior or for the firing of cell types. Over-
trained rats in a Morris water maze with artificially generated
water currents rely on landmarks rather than path integration
of sensorimotor cues to find the hidden platform (Moghaddam
and Bures 1997). Head direction cells (Taube et al. 1990)
receive vestibular signals, visual motion signals, and signals
about landmark locations. Furthermore, if visual motion and
landmark cues contradict each other, often the head direction
cells average signals from both cues (Blair and Sharp 1996).
The firing patterns of grid cells rotate with landmarks, thus,
grid cell firing is locked to visual landmarks (Hafting et al.
2005; their Fig. 4). If idiothetic cues are in conflict with
landmarks, place cells rely largely on landmarks for small
mismatches and hippocampus formed a new representation
for large mismatches (Knierim et al. 1998). Another experi-
ment changes the size of the cage while running the experi-
ment. Grid cell firing showed a rescaling to the environment
leading to a deformation of the hexagonal grid structure. This
rescaling is slowly reduced with experiencing the newly sized
environment and the grid cell firing pattern is restored to its
intrinsic hexagonal structure. This suggests that rats rely on
visual cues in familiar environments such as boundaries and
grid cell firing gets deformed if these cues are shifted (Barry et
al. 2007). In sum, the vestibular system and the visual land-
marks play a major role in driving cells prior or close to
entorhinal cortex and the grid cell system.

4.6 Challenges to our flow-hypotheses

The results of our model simulations motivate two hypoth-
eses. First, optic flow among other cues might contribute to
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the firing of grid cells. This hypothesis can be tested by
using a virtual environment setup, similar to the one used by
Harvey et al. (2009). In such a setup, the animal is running
on a trackball and the corresponding video signal is shown
on a display in front of the animal. In this case visual cues
that lead to optic flow can be manipulated in two ways.
Optic flow cues can be gradually removed while the animal
is still provided with sensorimotor cues. According to our
model less flow would lead to larger estimation errors for
linear and rotational body velocities. For our multi-modal
integration paradigm this would lead to a decrease in grid
score for grid cells. Another manipulation is the update of
the video being inconsistent with the movement of the
animal on the trackball, e.g. instead of displaying a simulat-
ed forward motion showing a simulated backward motion.
In this case we expect again a decrease in grid score as firing
induced by optic flow becomes inconsistent with firing
induced by e.g. sensorimotor signals. Our second hypothesis
is that GS depends on the quality of the flow signal. From
our simulation results we infer that for up to 30 °/frame
standard deviation of Gaussian noise the grid score would
still be about one for cells in the experiment, so they would
still be classified as grid cells. This can be tested by super-
imposing noise in the video displayed to the rat in that again
should affect the grid score of grid cells. Our hypothesis
depends largely on the quality of optic flow that is available
to the rat.

4.7 Optic flow amongst other cues

Optic flow directly provides linear and rotational velocity of
the rat’s motion. Note that our model only simulated body
motion, not head or eye motion. These velocity estimates for
body motion can be temporally integrated to result in self-
position information with respect to a reference location. For
the same position estimates linear and angular acceleration
signals from the vestibular system would have to be tempo-
rally integrated twice. Temporal integration at two stages
introduces an additional source of error accumulation in
comparison to a single temporal integration used for optic
flow. Other cues, like visual landmarks, provide a self-
position signal without temporal integration and are in that
sense at an advantage compared to optic flow. Also optic
flow is not available in the dark or in environments that do
not provide enough texture to pick up flow. In these cases it
becomes very likely that sensorimotor signals and vestibular
signals are used for path integration. On the other hand,
visual input might cause the observed compression and
expansion effects of grid cell firing fields as a result of
expanding or shrinking the rat’s cage during the experiment.
For instance, optic flow that is generated from an altered
cage size would be different and can indicate an expansion
or contraction. Optic flow can be used for path integration

during the initial phase of exploration before landmarks are
learned and the environment is mapped out. In sum, optic
flow might be one cue in the multi-modal integration of cues
that lead to the firing of grid cells in cases where flow is
available by texture together with sufficient lighting.
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